
Advanced Operating Systems 
20MCAT172 
(Elective 1)
Module V

1



Syllabus

Database Systems: Problem of Concurrency Control – Serializability –
Basic Synchronization Primitives for Concurrency Control – Lock-Based
Algorithms – Time-Stamped Based Algorithms – Optimistic Algorithms.

(Mukesh Singhal and Niranjan G. Shivaratri, “Advanced Concepts in Operating 
Systems – Distributed, Database, and Multiprocessor Operating Systems”, Tata 
McGraw-Hill, 2001.)

2



Database Systems

3



Database Systems

• A database system consists of a set of shared data objects that can be
accessed by users.

• A data object can be a page, a file, a segment or a record.

• For the purpose of concurrency control, we will view database as a
collection of data objects (d1,d2,.....dm).

• The state of a database is given by the values of its data objects.

• In a database, certain semantic relationships, called consistency assertions
or integrity constraints must hold among its data objects.

• A database is said to be consistent if the values of its data objects satisfy all
of its consistency assertions.

4



Transactions

• A user interacts with a database by performing read and write actions on
the data objects.

• The actions of a user are normally group together (as a program) to form a
single logical unit of interaction, termed a transaction.

• A transaction consists of a sequence of read, compute and write
statements that refer to the data objects of a database.

• The following are the properties of a transaction:

• A transaction preserves the consistency of a database.

• A transaction terminates in finite time.

5



Transactions

• A transaction that does not modify any data object but just read some of
them is referred as a read-only transaction.

• A transaction that modifies at least one date object is known as an update
transaction or an update.

• The term transaction is used in a general sense to stand for query or
update.

• For a transaction, the set of data objects that are read by it are referred to
as it's Readset and the set of data objects that are written by it are referred
to as its Writeset.

• Readset of a transaction - RS(T)

• Writeset of a transaction – WS(T)

6



Transactions

• Conflict in DBMS can be defined as two or more different transactions
accessing the same variable and atleast one of them is a write operation.

• There are three types of conflict in the database transaction.

• Write-Read (WR) conflict

• Read-Write (RW) conflict

• Write-Write (WW) conflict

7



Transactions

8



Transaction Processing

• A transaction is executing its action one by one from the beginning to the end.

• A Read Action of a transaction is executed by reading the data object in the
workspace of the transaction.

• A Write Action of a transaction modifies a data object in the workspace and
eventually writes it to the database.

9



The Concurrency Control model of Database Systems

• A database system consist of three software modules:

• A transaction manager (TM)

• A data Manager (DM)

• A Scheduler

• A TM supervises the execution of a transaction.

• A TM interacts with the DM to carry out the execution of a transaction.

• TM assign a timestamp to a transaction or issue requests to lock and unlock data
objects on behalf of a user.

• TM is an interface between users and the database system.

10



The Concurrency Control model of Database Systems

• The scheduler is responsible for enforcing concurrency control.

• It grants or releases locks on data objects as requested by a transaction.

• The DM manages the database.

• DM carries out the read-write requests issued by the TM.

• DM is an interface between the scheduler and the database.

• The DM is responsible for failure recovery.

11



The Concurrency Control model of Database Systems

• A TM executes a transaction by executing all its actions sequentially from the
beginning to the end.

• In order to execute an action, the TM sends an appropriate request to the DM
via the scheduler.

• DM executes a stream of transaction actions.

• To perform concurrency control, the scheduler modifies the stream of actions
directed toward the DM.

12



The Concurrency Control model of Database Systems

13



The Problem of Concurrency Control

• In a database system, several transactions are under execution
simultaneously.

• Efficiency can be improved by executing transactions concurrently, ie, by
executing read and write actions from several transactions in an
interleaved manner.

• Since concurrently running transactions may access the same data objects,
the following situations may arise:

1. Inconsistent Retrieval
2. Inconsistent Update

14



The Problem of Concurrency Control

1. Inconsistent Retrieval

• It occurs when a transaction reads some data objects of a database
before another transaction has completed with its modification of
those data objects.

2. Inconsistent Update

• It occurs when many transactions read and write onto a common set
of data objects of a database, leaving the database in an inconsistent
state.

15



Serializability

• The transactions are set of instructions and these instructions perform operations on
database.

• When multiple transactions are running concurrently then there needs to be a
sequence in which the operations are performed because at a time only one operation
can be performed on the database.

• This sequence of operations is known as Schedule.

• When multiple transactions are running concurrently then there is a possibility that
the database may be left in an inconsistent state.

• Serializability is a concept that helps us to check which Schedules are serializable.

• A serializable schedule is the one that always leaves the database in consistent state.

• Execution of a transaction is modeled by a log and the correctness condition is stated
in terms of logs.

16



Serializability

LOGS

• The serializability theory models executions of a concurrency control algorithm
by a history variable called the log (also called schedule).

• A log captures the chronological order in which read and write actions of
transactions are executed under a concurrency control algorithm.

• Let T= {T0, T1,.....Tn} be a transaction system. A log over T models an interleaved
execution of T0, T1,.....Tn .

17



Serializability

LOGS

18



Serializability

Serial Logs

• In a database system, if transactions are executed strictly serially, all the actions of each
transaction must complete before any action of the next transaction can start, then the
resulting log is termed a serial log.

• A serial log represents an execution of transactions where actions from different
transactions are not interleaved.

• For eg. For a set of transactions T1 , T2 ,......, Tn , a serial log is of the form Ti1 Ti2 Tin

,where i1,i2,....,in is a subset of T1.

• EXAMPLE : Log L2 of Fig. 19.3 (Actions from different transactions have not
been interleaved)

19



Serializability

Log Equivalence

• Two logs are equivalent if all the transactions in both the logs see the same state of the
database and leave the database in the same state after all the transactions are
finished.

20



Serializability

Log Equivalence

21



Serializability

The SerializabilityTheorem:

“ A log L is serializable iff SG(L) is acyclic. “

• A serialization graph is constructed from a log.

22



Basic Synchronization Primitives for Concurrency 
Control

23



Basic Synchronization Primitives for Concurrency 
Control

• Concurrency is the execution of the multiple instruction sequences at the same time. 

• It happens in the operating system when there are several process threads running in 
parallel. 

• The running process threads always communicate with each other through shared 
memory or message passing. 

• Concurrency results in sharing of resources result in problems like deadlocks and 
resources starvation.

• It helps in techniques like coordinating execution of processes, memory allocation and 
execution scheduling for maximizing throughput.

24



Basic Synchronization Primitives for Concurrency 
Control

Principles of Concurrency :

• Both interleaved and overlapped processes can be viewed as examples of concurrent 
processes, they both present the same problems.

• The relative speed of execution cannot be predicted. 

• It depends on the following:

•The activities of other processes

•The way operating system handles interrupts

•The scheduling policies of the operating system

25



Basic Synchronization Primitives for Concurrency 
Control

Problems in Concurrency :

• Sharing global resources

• Optimal allocation of resources

• Locating programming errors

• Locking the channel

26



Concurrency Control Algorithms

27



Basic Synchronization Primitives

• LOCKS

•TIMESTAMPS

28



Basic Synchronization Primitives

• LOCKS

•Each data object has a lock associated with it.

• A transaction can request, hold, or release the lock on a data object.

• When a transaction holds a lock, the transaction is said to have locked the corresponding
data object.

• A transaction can lock a data object in two modes: Exclusive and Shared.

• If a transaction has locked a data object in exclusive mode, no other transaction can
concurrently lock it in any mode.

• If a transaction has locked a data object in shared mode, other transactions can
concurrently lock it but only in shared mode.

• By locking data objects, a transaction ensures that the locked data objects are
inaccessible to other transactions.

29



Basic Synchronization Primitives

• TIMESTAMPS

• A unique number that is assigned to a transaction or a data object.

• Timestamps are commonly generated according to Lamport’s Scheme.

• Timestamps have two properties:

• Uniqueness

•They are unique system wide.

• Monotonicity

•The value of timestamp increases with time.

•Timestamps allow us to place a total ordering on the transactions of a distributed
database system by simply ordering the transactions by their timestamps.

30



Lock-Based Algorithms 

31



LOCK BASED ALGORITHMS

• In lock based concurrency control algorithms, a transaction must lock a data object
before accessing it.

• In a locking environment, a transaction T is a sequence {a1 (d1), a2 (d2), ...., an (dn)} of
n actions, where ai is the operation performed in the ith action and the di is the data
object acted upon in ith action.

• Lock and Unlock are also permissible actions in locking algorithms.

• A transaction can lock a data object di with a “lock(di)” action and can unlock it by
an “unlock(di)” action.

• A log that results from an execution where a transaction attempting to lock an
already locked data object waits, is referred to as a legal log.

32



LOCK BASED ALGORITHMS

• A transaction is well-formed if it

• Locks a data object before accessing it.

• Does not lock a data object more than once, and

• Unlocks all the locked data objects before it completes.

• To guarantee serializability, additional constraints needed, These constraints are 
expressed as locking algorithms.

33



LOCK BASED ALGORITHMS

STATIC LOCKING

• In static locking, a transaction acquires locks on all the data objects it needs before 

executing any action on the data objects.

• Static locking requires a transaction to pre-declare all the data objects it needs for 

execution.

• A transaction unlocks all the locked data objects only after it has executed all of its 

actions.

34



LOCK BASED ALGORITHMS

STATIC LOCKING

• Static Locking is conceptually very simple.

• It seriously limits concurrency because any two transactions that have a conflict 

must execute serially.

• Drawbacks

• Limits the performance of database system.

• It requires a priori knowledge of the data objects to be accessed by transactions. 

(Impractical in applications where the next data objects to be locked depends 

upon the value of another data object.)

35



LOCK BASED ALGORITHMS

Two-Phase Locking (2PL)

• Dynamic Locking scheme in which a transaction requests a lock on a data object

when it needs the data object.

• Database consistency is not guaranteed if a transaction unlocks a locked data object

immediately after it is done with it.

• Two-Phase locking imposes a constraint on lock acquisition and the lock release

actions of a transaction to guarantee consistency.

36



LOCK BASED ALGORITHMS

• In two-phase locking, a transaction cannot request a lock on any data object 

after it has unlocked a data object.

• Thus, a transaction must have acquired locks on all the needed data objects 

before unlocking a data object.

• A two-phase locking has two phases:

• A Growing Phase

• Shrinking Phase

37



Two-Phase Locking (2PL)

•A two-phase locking has two phases:

• A Growing Phase

• During which a transaction requests locks (Without releasing any lock)

• Shrinking Phase

• Which starts with the first unlock action, during which a transaction releases locks. (Without

requesting any more locks)

• The stage of a transaction when the transaction holds locks on all the

needed data objects is referred to as its lock point.

38



Two-Phase Locking (2PL)

39



Problems With 2PL

• Two-Phase locking suffers from the problems of deadlock and cascaded aborts.

• Two Phase locking is prone to deadlocks because a transaction can request a lock on a data

object while holding locks on other data objects.

• A set of transactions are deadlocked if they are involved in a circular wait.

• When a transaction is rolled back, all the data objects modified by it are restored to their

original states. In this case, all transactions that have read by them must also be restored and

so on. This phenomenon is called the cascaded roll-back.

• Two phase locking suffers from the problem of cascaded roll-back because a transaction may

be rolled back after it has released the locks on some data objects and other transactions

have read those modified data objects.

40



Timestamp-Based Locking

• When a transaction is submitted, it is assigned a unique timestamp.

• The timestamps of transaction specify a total order on the transactions and

can be used to resolve conflicts between transactions.

• When a transaction conflicts with another transaction, the concurrency

control algorithm makes a decision based on the result of the comparison of

their timestamp.

41



Timestamp-Based Locking

• The use is to prevent deadlock.

• Conflict Resolution: A conflicit is resolved by taking one of the following actions.

• Wait-The requesting transaction is made to wait until the conflicting transaction either completes or aborts.

• Restart-Either the requesting transaction or the transaction it conflicts with is aborted and started afresh.

Restarting is achieved by using one of the following primitives.

- Die- Requesting transaction aborts and starts afresh.

- Wound- The transaction in conflicit with the requesting transaction is tagged as wounded and a message “wounded” is sent to all

sites that the wounded transaction has visited.

• Wait-Die Algorithm

• Wound-Wait Algorithm

42



Timestamp-Based Locking

The Wait-Die algorithm:

• Allow wait only if waiting process is 
older.

• Since timestamps increase in any 
chain of waiting processes, cycles are 
impossible.

43



Timestamp-Based Locking

The Wound-Wait algorithm: Preemptive algorithm.

• Allow wait only if waiting process is 
younger.

• Here timestamps decrease in any chain of 
waiting process, so cycles are again 
impossible.
It is wiser to give older processes priority.

44



Timestamp-Based Locking

Comparison Between The Algorithms

The Wound-Wait algorithm preempts the younger process. When the younger process
re-requests resource, it has to wait for older process to finish.
This is the better of the two algorithms.

• Waiting Time:

• In the WAIT-DIE algorithm, an older transaction is made to wait for younger ones.

• In the WOUND-DIE algorithm, an older transaction never waits for younger ones
and wound all the younger transactions.

• Number of Restarts:

• In the WAIT-DIE algorithm, the younger requester dies and is restarted.

• In the WOUND-DIE algorithm, if the requester is younger, it waits rather than
continuously dying and restarting.

45



Non Two Phase Locking

46

• When the data objects of a database system are hierarchically organized 
(hierarchical database systems), a non two phase locking protocol can ensure 
serializability and freedom from deadlocks.

• In non-two-phase locking, a transaction can request a lock on a data object even 
after releasing locks on some data objects.

• A data object cannot be locked more than once by the same transaction.

• In order to access a data object, a transaction must first lock it.

• If a transaction attempts to lock a data object that is already locked, the 
transaction  is blocked.

• When a transaction unlocks a data object, one of the transactions waiting for it 
gets a lock on it and resumes. 



Non Two Phase Locking

47

• When a transaction Ti starts, it selects a data object in the database tree for
locking and can be subsequently lock the data objects only in the subtree with
root node.



Non Two Phase Locking

48

.



Non Two Phase Locking

49

• Advantages:

• It is free from deadlocks.

• A lock can be released when it is no longer needed.

• The availability of data objects to other transaction is higher.



Time-Stamped Based Algorithms

50



Time-Stamped Based Algorithms

51

• In timestamp based concurrency control algorithms, every site maintains a logical clock that is

incremented when a transition is submitted at that site and updated whenever the site

receives a message with a higher clock value.

• Every message contains the current clock value of its sender site.

• Each transaction is assigned a unique timestamp and conflicting actions are executed in the

order of the timestamp of their transactions.

• Timestamps can be used in two ways:

• First, they can be used to determine the outdatedness of a request with respect to the data

object it is operating on.

• Second, they can be used to order events with respect to one another.

• In timestamp based concurrency control algorithms, the serialization order of transactions is

selected a priori (decided by their timestamp) and transactions are forced to follow this order.



Time-Stamped Based Algorithms

52

• Timestamp based concurrency control algorithms are:

• Basic Timestamp Ordering Algorithms

• Thomas Write Rule (TWR)

• Multiversion Timestamp Ordering Algorithm

• Conservative Timestamp Ordering Algorithm



Basic Timestamp Ordering Algorithms (BTO )

53

• The scheduler at each DM (Data Manager) keeps track of the largest timestamp of any

read and write processed thus far for each data object.



Thomas Write Rule (TWR)

54

• It states that, if a more recent transaction has already written the value of an object,

then a less recent transaction does not need perform its own write since it will

eventually be overwritten by the more recent one.

• Is suitable only for the execution of write actions.

• For a write( x, v, TS ), if TS < W-ts(x), then TWR says that instead of rejecting the write,

simply ignore it.

• This is sufficient to enforce synchronization among writes.

• An additional mechanism is needed for synchronization between read and writes

because TWR takes care of only write-write synchronization.

• TWR is an improvement over BTO algorithm because it reduces the number of

transaction aborts.



Multiversion Timestamp Ordering Algorithm

55

• A problem with 2PL is that it can lead to deadlocks.

• Multiversion timestamp ordering scheme solves this problem by ordering transactions

and aborting transactions that access data out of order.

• It also increases the concurrency in the system by never making an operation block.

• The basic idea in this scheme is to assign transactions timestamps when they are

started, which are used to order these transactions.

• If two transactions access data items in an order that is inconsistent with their time

stamps, then one of them is aborted.



Multiversion Timestamp Ordering Algorithm

56



Multiversion Timestamp Ordering Algorithm

57



Conservative Timestamp Ordering Algorithm

58



Conservative Timestamp Ordering Algorithm

59

• .



Conservative Timestamp Ordering Algorithm

60

• .



Optimistic Algorithms

61



Optimistic Algorithms

62

• Optimistic Concurrency Control Algorithms are based on the assumption that
conflicts do not occur during execution time.

• No synchonization is performed when a transaction is executed.

• However, a check is performed at the end of the transaction to make sure that
no conflicts have occured.

• If there is a conflict, the transaction will be aborted.

• Otherwise, the transaction is commited. Since conflicts do not occur very often,
this algoritm is very efficient compared to other locking algorithms.



Optimistic Algorithms

63

Kung-Robinson Algorithm
• Kung and Robinson were the first to propose an optimistic method for

concurrency control.

• The optimistic situation for this algorithm happens when

• conflicts are unlikely to happen

• the system consists mainly read-only transactions (such as a query dominant
system)

• Basic Idea: No synchonization check is performed during transaction processing
time, however, a validation is performed to make sure there is no conflicts
occurred. If a conflict is found, the tentative write is discarded and the
transaction is restarted.



Optimistic Algorithms

64

The algorithm

• Divide the execution of transaction into three phases:



Optimistic Algorithms

65

• Read phase: data objects are read, the intended computation of the transaction
is done, and writes are made on a temporary storage.

• Validation phase: check to see if writes made by the transaction violate the
consistency of the database. If the check finds out any conflicts, the data in the
temporary storage will be discarded. Otherwise, the write phase will write the data
into the database.

• Write phase: If the validation phase passes ok, write will be performed to the
database. If the validation phase fails to pass, all temporary written data will be
aborted.



Thank You

66


